A Lefschetz fixed point theorem for multivalued maps of finite spaces


- Jonathan Ariel Barmak, Marian Mrozek, Thomas Wanner:
A Lefschetz fixed point theorem for multivalued maps of finite spaces
Mathematische Zeitschrift 294(3-4), pp. 1477-1497, 2020.
Abstract
We prove a version of the Lefschetz fixed point theorem for multivalued maps $F:X\multimap X$ in which $X$ is a finite $T_0$ space.
Links
The preprint version of the paper can be downloaded from https://arxiv.org/abs/1808.08985, while the published version of the paper can be found at https://doi.org/10.1007/s00209-019-02333-6.
Bibtex
@article{barmak:etal:20a,
author = {Jonathan Ariel Barmak and Marian Mrozek and Thomas Wanner},
title = {A {L}efschetz fixed point theorem for multivalued maps of finite spaces},
journal = {Mathematische Zeitschrift},
volume = {294},
number = {3--4},
year = {2020},
pages = {1477--1497},
doi = {10.1007/s00209-019-02333-6}
}